Introduction
Data Skeptic23 Maj 2014

Introduction

The Data Skeptic Podcast features conversations with topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.

This first episode is a short discussion about what this podcast is all about.

Avsnitt(588)

Data science tools and other announcements from Ignite

Data science tools and other announcements from Ignite

In this episode, Microsoft's Corporate Vice President for Cloud Artificial Intelligence, Joseph Sirosh, joins host Kyle Polich to share some of the Microsoft's latest and most exciting innovations in AI development platforms. Last month, Microsoft launched a set of three powerful new capabilities in Azure Machine Learning for advanced developers to exploit big data, GPUs, data wrangling and container-based model deployment. Extended show notes found here. Thanks to our sponsor Springboard.  Check out Springboard's Data Science Career Track Bootcamp.

6 Okt 201731min

Generative AI for Content Creation

Generative AI for Content Creation

Last year, the film development and production company End Cue produced a short film, called Sunspring, that was entirely written by an artificial intelligence using neural networks. More specifically, it was authored by a recurrent neural network (RNN) called long short-term memory (LSTM). According to End Cue's Chief Technical Officer, Deb Ray, the company has come a long way in improving the generative AI aspect of the bot. In this episode, Deb Ray joins host Kyle Polich to discuss how generative AI models are being applied in creative processes, such as screenwriting. Their discussion also explores how data science for analyzing development projects, such as financing and selecting scripts, as well as optimizing the content production process.

29 Sep 201734min

[MINI] One Shot Learning

[MINI] One Shot Learning

One Shot Learning is the class of machine learning procedures that focuses learning something from a small number of examples. This is in contrast to "traditional" machine learning which typically requires a very large training set to build a reasonable model. In this episode, Kyle presents a coded message to Linhda who is able to recognize that many of these new symbols created are likely to be the same symbol, despite having extremely few examples of each. Why can the human brain recognize a new symbol with relative ease while most machine learning algorithms require large training data? We discuss some of the reasons why and approaches to One Shot Learning.

22 Sep 201717min

Recommender Systems Live from FARCON 2017

Recommender Systems Live from FARCON 2017

Recommender systems play an important role in providing personalized content to online users. Yet, typical data mining techniques are not well suited for the unique challenges that recommender systems face. In this episode, host Kyle Polich joins Dr. Joseph Konstan from the University of Minnesota at a live recording at FARCON 2017 in Minneapolis to discuss recommender systems and how machine learning can create better user experiences.

15 Sep 201746min

[MINI] Long Short Term Memory

[MINI] Long Short Term Memory

Thanks to our sponsor brilliant.org/dataskeptics A Long Short Term Memory (LSTM) is a neural unit, often used in Recurrent Neural Network (RNN) which attempts to provide the network the capacity to store information for longer periods of time. An LSTM unit remembers values for either long or short time periods. The key to this ability is that it uses no activation function within its recurrent components. Thus, the stored value is not iteratively modified and the gradient does not tend to vanish when trained with backpropagation through time.

8 Sep 201715min

Zillow Zestimate

Zillow Zestimate

Zillow is a leading real estate information and home-related marketplace. We interviewed Andrew Martin, a data science Research Manager at Zillow, to learn more about how Zillow uses data science and big data to make real estate predictions.

1 Sep 201737min

Cardiologist Level Arrhythmia Detection with CNNs

Cardiologist Level Arrhythmia Detection with CNNs

Our guest Pranav Rajpurkar and his coauthored recently published Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks, a paper in which they demonstrate the use of Convolutional Neural Networks which outperform board certified cardiologists in detecting a wide range of heart arrhythmias from ECG data.

25 Aug 201732min

[MINI] Recurrent Neural Networks

[MINI] Recurrent Neural Networks

RNNs are a class of deep learning models designed to capture sequential behavior.  An RNN trains a set of weights which depend not just on new input but also on the previous state of the neural network.  This directed cycle allows the training phase to find solutions which rely on the state at a previous time, thus giving the network a form of memory.  RNNs have been used effectively in language analysis, translation, speech recognition, and many other tasks.

18 Aug 201717min

Populärt inom Vetenskap

p3-dystopia
dumma-manniskor
paranormalt-med-caroline-giertz
svd-nyhetsartiklar
allt-du-velat-veta
rss-vetenskapligt-talat
kapitalet-en-podd-om-ekonomi
rss-vetenskapspodden
dumforklarat
rss-vetenskapsradion
rss-ufobortom-rimligt-tvivel
rss-vetenskapsradion-2
sexet
rss-i-hjarnan-pa-louise-epstein
medicinvetarna
det-morka-psyket
rss-spraket
vetenskapsradion
a-kursen
hacka-livet