Building the Internet of Agents with Vijoy Pandey - #737

Building the Internet of Agents with Vijoy Pandey - #737

Today, we're joined by Vijoy Pandey, SVP and general manager at Outshift by Cisco to discuss a foundational challenge for the enterprise: how do we make specialized agents from different vendors collaborate effectively? As companies like Salesforce, Workday, and Microsoft all develop their own agentic systems, integrating them creates a complex, probabilistic, and noisy environment, a stark contrast to the deterministic APIs of the past. Vijoy introduces Cisco's vision for an "Internet of Agents," a platform to manage this new reality, and its open-source implementation, AGNTCY. We explore the four phases of agent collaboration—discovery, composition, deployment, and evaluation—and dive deep into the communication stack, from syntactic protocols like A2A, ACP, and MCP to the deeper semantic challenges of creating a shared understanding between agents. Vijoy also unveils SLIM (Secure Low-Latency Interactive Messaging), a novel transport layer designed to make agent-to-agent communication quantum-safe, real-time, and efficient for multi-modal workloads. The complete show notes for this episode can be found at ⁠https://twimlai.com/go/737.

Avsnitt(776)

AI Trends 2024: Reinforcement Learning in the Age of LLMs with Kamyar Azizzadenesheli - #670

AI Trends 2024: Reinforcement Learning in the Age of LLMs with Kamyar Azizzadenesheli - #670

Today we’re joined by Kamyar Azizzadenesheli, a staff researcher at Nvidia, to continue our AI Trends 2024 series. In our conversation, Kamyar updates us on the latest developments in reinforcement learning (RL), and how the RL community is taking advantage of the abstract reasoning abilities of large language models (LLMs). Kamyar shares his insights on how LLMs are pushing RL performance forward in a variety of applications, such as ALOHA, a robot that can learn to fold clothes, and Voyager, an RL agent that uses GPT-4 to outperform prior systems at playing Minecraft. We also explore the progress being made in assessing and addressing the risks of RL-based decision-making in domains such as finance, healthcare, and agriculture. Finally, we discuss the future of deep reinforcement learning, Kamyar’s top predictions for the field, and how greater compute capabilities will be critical in achieving general intelligence. The complete show notes for this episode can be found at twimlai.com/go/670.

5 Feb 20241h 10min

Building and Deploying Real-World RAG Applications with Ram Sriharsha - #669

Building and Deploying Real-World RAG Applications with Ram Sriharsha - #669

Today we’re joined by Ram Sriharsha, VP of engineering at Pinecone. In our conversation, we dive into the topic of vector databases and retrieval augmented generation (RAG). We explore the trade-offs between relying solely on LLMs for retrieval tasks versus combining retrieval in vector databases and LLMs, the advantages and complexities of RAG with vector databases, the key considerations for building and deploying real-world RAG-based applications, and an in-depth look at Pinecone's new serverless offering. Currently in public preview, Pinecone Serverless is a vector database that enables on-demand data loading, flexible scaling, and cost-effective query processing. Ram discusses how the serverless paradigm impacts the vector database’s core architecture, key features, and other considerations. Lastly, Ram shares his perspective on the future of vector databases in helping enterprises deliver RAG systems. The complete show notes for this episode can be found at twimlai.com/go/669.

29 Jan 202435min

Nightshade: Data Poisoning to Fight Generative AI with Ben Zhao - #668

Nightshade: Data Poisoning to Fight Generative AI with Ben Zhao - #668

Today we’re joined by Ben Zhao, a Neubauer professor of computer science at the University of Chicago. In our conversation, we explore his research at the intersection of security and generative AI. We focus on Ben’s recent Fawkes, Glaze, and Nightshade projects, which use “poisoning” approaches to provide users with security and protection against AI encroachments. The first tool we discuss, Fawkes, imperceptibly “cloaks” images in such a way that models perceive them as highly distorted, effectively shielding individuals from recognition by facial recognition models. We then dig into Glaze, a tool that employs machine learning algorithms to compute subtle alterations that are indiscernible to human eyes but adept at tricking the models into perceiving a significant shift in art style, giving artists a unique defense against style mimicry. Lastly, we cover Nightshade, a strategic defense tool for artists akin to a 'poison pill' which allows artists to apply imperceptible changes to their images that effectively “breaks” generative AI models that are trained on them. The complete show notes for this episode can be found at twimlai.com/go/668.

22 Jan 202439min

Learning Transformer Programs with Dan Friedman - #667

Learning Transformer Programs with Dan Friedman - #667

Today, we continue our NeurIPS series with Dan Friedman, a PhD student in the Princeton NLP group. In our conversation, we explore his research on mechanistic interpretability for transformer models, specifically his paper, Learning Transformer Programs. The LTP paper proposes modifications to the transformer architecture which allow transformer models to be easily converted into human-readable programs, making them inherently interpretable. In our conversation, we compare the approach proposed by this research with prior approaches to understanding the models and their shortcomings. We also dig into the approach’s function and scale limitations and constraints. The complete show notes for this episode can be found at twimlai.com/go/667.

15 Jan 202438min

AI Trends 2024: Machine Learning & Deep Learning with Thomas Dietterich - #666

AI Trends 2024: Machine Learning & Deep Learning with Thomas Dietterich - #666

Today we continue our AI Trends 2024 series with a conversation with Thomas Dietterich, distinguished professor emeritus at Oregon State University. As you might expect, Large Language Models figured prominently in our conversation, and we covered a vast array of papers and use cases exploring current research into topics such as monolithic vs. modular architectures, hallucinations, the application of uncertainty quantification (UQ), and using RAG as a sort of memory module for LLMs. Lastly, don’t miss Tom’s predictions on what he foresees happening this year as well as his words of encouragement for those new to the field. The complete show notes for this episode can be found at twimlai.com/go/666.

8 Jan 20241h 5min

AI Trends 2024: Computer Vision with Naila Murray - #665

AI Trends 2024: Computer Vision with Naila Murray - #665

Today we kick off our AI Trends 2024 series with a conversation with Naila Murray, director of AI research at Meta. In our conversation with Naila, we dig into the latest trends and developments in the realm of computer vision. We explore advancements in the areas of controllable generation, visual programming, 3D Gaussian splatting, and multimodal models, specifically vision plus LLMs. We discuss tools and open source projects, including Segment Anything–a tool for versatile zero-shot image segmentation using simple text prompts clicks, and bounding boxes; ControlNet–which adds conditional control to stable diffusion models; and DINOv2–a visual encoding model enabling object recognition, segmentation, and depth estimation, even in data-scarce scenarios. Finally, Naila shares her view on the most exciting opportunities in the field, as well as her predictions for upcoming years. The complete show notes for this episode can be found at twimlai.com/go/665.

2 Jan 202452min

Are Vector DBs the Future Data Platform for AI? with Ed Anuff - #664

Are Vector DBs the Future Data Platform for AI? with Ed Anuff - #664

Today we’re joined by Ed Anuff, chief product officer at DataStax. In our conversation, we discuss Ed’s insights on RAG, vector databases, embedding models, and more. We dig into the underpinnings of modern vector databases (like HNSW and DiskANN) that allow them to efficiently handle massive and unstructured data sets, and discuss how they help users serve up relevant results for RAG, AI assistants, and other use cases. We also discuss embedding models and their role in vector comparisons and database retrieval as well as the potential for GPU usage to enhance vector database performance. The complete show notes for this episode can be found at twimlai.com/go/664.

28 Dec 202348min

Quantizing Transformers by Helping Attention Heads Do Nothing with Markus Nagel - #663

Quantizing Transformers by Helping Attention Heads Do Nothing with Markus Nagel - #663

Today we’re joined by Markus Nagel, research scientist at Qualcomm AI Research, who helps us kick off our coverage of NeurIPS 2023. In our conversation with Markus, we cover his accepted papers at the conference, along with other work presented by Qualcomm AI Research scientists. Markus’ first paper, Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing, focuses on tackling activation quantization issues introduced by the attention mechanism and how to solve them. We also discuss Pruning vs Quantization: Which is Better?, which focuses on comparing the effectiveness of these two methods in achieving model weight compression. Additional papers discussed focus on topics like using scalarization in multitask and multidomain learning to improve training and inference, using diffusion models for a sequence of state models and actions, applying geometric algebra with equivariance to transformers, and applying a deductive verification of chain of thought reasoning performed by LLMs. The complete show notes for this episode can be found at twimlai.com/go/663.

26 Dec 202346min

Populärt inom Politik & nyheter

aftonbladet-krim
svenska-fall
motiv
p3-krim
fordomspodden
rss-krimstad
flashback-forever
rss-viva-fotboll
blenda-2
aftonbladet-daily
rss-sanning-konsekvens
grans
spar
rss-vad-fan-hande
dagens-eko
olyckan-inifran
svd-nyhetsartiklar
rss-frandfors-horna
rss-expressen-dok
rss-krimreportrarna