
Understanding the COVID-19 Data Quality Problem with Sherri Rose - #374
Today we’re joined by Sherri Rose, Associate Professor at Harvard Medical School. We cover a lot of ground in our conversation, including the intersection of her research with the current COVID-19 pandemic, the importance of quality in datasets and rigor when publishing papers, and the pitfalls of using causal inference. We also touch on Sherri’s work in algorithmic fairness, the shift she’s seen in fairness conferences covering these issues in relation to healthcare research, and a few recent pape
11 Maj 202044min

The Whys and Hows of Managing Machine Learning Artifacts with Lukas Biewald - #373
Today we’re joined by Lukas Biewald, founder and CEO of Weights & Biases, to discuss their new tool Artifacts, an end to end pipeline tracker. In our conversation, we explore Artifacts’ place in the broader machine learning tooling ecosystem through the lens of our eBook “The definitive guide to ML Platforms” and how it fits with the W&B model management platform. We discuss also discuss what exactly “Artifacts” are, what the tool is tracking, and take a look at the onboarding process for users.
7 Maj 202054min

Language Modeling and Protein Generation at Salesforce with Richard Socher - #372
Today we’re joined Richard Socher, Chief Scientist and Executive VP at Salesforce. Richard and his team have published quite a few great projects lately, including CTRL: A Conditional Transformer Language Model for Controllable Generation, and ProGen, an AI Protein Generator, both of which we cover in-depth in this conversation. We also explore the balancing act between investments, product requirement research and otherwise at a large product-focused company like Salesforce.
4 Maj 202042min

AI Research at JPMorgan Chase with Manuela Veloso - #371
Today we’re joined by Manuela Veloso, Head of AI Research at J.P. Morgan Chase. Since moving from CMU to JP Morgan Chase, Manuela and her team established a set of seven lofty research goals. In this conversation we focus on the first three: building AI systems to eradicate financial crime, safely liberate data, and perfect client experience. We also explore Manuela’s background, including her time CMU in the ‘80s, or as she describes it, the “mecca of AI,” and her founding role with RoboCup.
30 Apr 202046min

Panel: Responsible Data Science in the Fight Against COVID-19 - #370
In this discussion, we explore how data scientists and ML/AI practitioners can responsibly contribute to the fight against coronavirus and COVID-19. Four experts: Rex Douglass, Rob Munro, Lea Shanley, and Gigi Yuen-Reed shared a ton of valuable insight on the best ways to get involved. We've gathered all the resources that our panelists discussed during the conversation, you can find those at twimlai.com/talk/370.
29 Apr 202058min

Adversarial Examples Are Not Bugs, They Are Features with Aleksander Madry - #369
Today we’re joined by Aleksander Madry, Faculty in the MIT EECS Department, to discuss his paper “Adversarial Examples Are Not Bugs, They Are Features.” In our conversation, we talk through what we expect these systems to do, vs what they’re actually doing, if we’re able to characterize these patterns, and what makes them compelling, and if the insights from the paper will help inform opinions on either side of the deep learning debate.
27 Apr 202041min

AI for Social Good: Why "Good" isn't Enough with Ben Green - #368
Today we’re joined by Ben Green, PhD Candidate at Harvard and Research Fellow at the AI Now Institute at NYU. Ben’s research is focused on the social and policy impacts of data science, with a focus on algorithmic fairness and the criminal justice system. We discuss his paper ‘Good' Isn't Good Enough,’ which explores the 2 things he feels are missing from data science and machine learning research; A grounded definition of what “good” actually means, and the absence of a “theory of change.
23 Apr 202041min

The Evolution of Evolutionary AI with Risto Miikkulainen - #367
Today we’re joined by Risto Miikkulainen, Associate VP of Evolutionary AI at Cognizant AI. Risto joined us back on episode #47 to discuss evolutionary algorithms, and today we get an update on the latest on the topic. In our conversation, we discuss use cases for evolutionary AI and the latest approaches to deploying evolutionary models. We also explore his paper “Better Future through AI: Avoiding Pitfalls and Guiding AI Towards its Full Potential,” which digs into the historical evolution of AI.
20 Apr 202037min