The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.

Avsnitt(764)

Advancing Robotic Brains and Bodies with Daniela Rus - #515

Advancing Robotic Brains and Bodies with Daniela Rus - #515

Today we’re joined by Daniela Rus, director of CSAIL & Deputy Dean of Research at MIT.  In our conversation with Daniela, we explore the history of CSAIL, her role as director of one of the most prestigious computer science labs in the world, how she defines robots, and her take on the current AI for robotics landscape. We also discuss some of her recent research interests including soft robotics, adaptive control in autonomous vehicles, and a mini surgeon robot made with sausage casing(?!).  The complete show notes for this episode can be found at twimlai.com/go/515.

2 Sep 202145min

Neural Synthesis of Binaural Speech From Mono Audio with Alexander Richard - #514

Neural Synthesis of Binaural Speech From Mono Audio with Alexander Richard - #514

Today we’re joined by Alexander Richard, a research scientist at Facebook Reality Labs, and recipient of the ICLR Best Paper Award for his paper “Neural Synthesis of Binaural Speech From Mono Audio.”  We begin our conversation with a look into the charter of Facebook Reality Labs, and Alex’s specific Codec Avatar project, where they’re developing AR/VR for social telepresence (applications like this come to mind). Of course, we dig into the aforementioned paper, discussing the difficulty in improving the quality of audio and the role of dynamic time warping, as well as the challenges of creating this model. Finally, Alex shares his thoughts on 3D rendering for audio, and other future research directions.  The complete show notes for this episode can be found at twimlai.com/go/514.

30 Aug 202146min

Using Brain Imaging to Improve Neural Networks with Alona Fyshe - #513

Using Brain Imaging to Improve Neural Networks with Alona Fyshe - #513

Today we’re joined by Alona Fyshe, an assistant professor at the University of Alberta.  We caught up with Alona on the heels of an interesting panel discussion that she participated in, centered around improving AI systems using research about brain activity. In our conversation, we explore the multiple types of brain images that are used in this research, what representations look like in these images, and how we can improve language models without knowing explicitly how the brain understands the language. We also discuss similar experiments that have incorporated vision, the relationship between computer vision models and the representations that language models create, and future projects like applying a reinforcement learning framework to improve language generation. The complete show notes for this episode can be found at twimlai.com/go/513.

26 Aug 202136min

Adaptivity in Machine Learning with Samory Kpotufe - #512

Adaptivity in Machine Learning with Samory Kpotufe - #512

Today we’re joined by Samory Kpotufe, an associate professor at Columbia University and program chair of the 2021 Conference on Learning Theory (COLT).  In our conversation with Samory, we explore his research at the intersection of machine learning, statistics, and learning theory, and his goal of reaching self-tuning, adaptive algorithms. We discuss Samory’s research in transfer learning and other potential procedures that could positively affect transfer, as well as his work understanding unsupervised learning including how clustering could be applied to real-world applications like cybersecurity, IoT (Smart homes, smart city sensors, etc) using methods like dimension reduction, random projection, and others. If you enjoyed this interview, you should definitely check out our conversation with Jelani Nelson on the “Theory of Computation.”  The complete show notes for this episode can be found at https://twimlai.com/go/512.

23 Aug 202149min

A Social Scientist’s Perspective on AI with Eric Rice - #511

A Social Scientist’s Perspective on AI with Eric Rice - #511

Today we’re joined by Eric Rice, associate professor at USC, and the co-director of the USC Center for Artificial Intelligence in Society.  Eric is a sociologist by trade, and in our conversation, we explore how he has made extensive inroads within the machine learning community through collaborations with ML academics and researchers. We discuss some of the most important lessons Eric has learned while doing interdisciplinary projects, how the social scientist’s approach to assessment and measurement would be different from a computer scientist's approach to assessing the algorithmic performance of a model.  We specifically explore a few projects he’s worked on including HIV prevention amongst the homeless youth population in LA, a project he spearheaded with former guest Milind Tambe, as well as a project focused on using ML techniques to assist in the identification of people in need of housing resources, and ensuring that they get the best interventions possible.  If you enjoyed this conversation, I encourage you to check out our conversation with Milind Tambe from last year’s TWIMLfest on Why AI Innovation and Social Impact Go Hand in Hand. The complete show notes for this episode can be found at https://twimlai.com/go/511.

19 Aug 202143min

Applications of Variational Autoencoders and Bayesian Optimization with José Miguel Hernández Lobato - #510

Applications of Variational Autoencoders and Bayesian Optimization with José Miguel Hernández Lobato - #510

Today we’re joined by José Miguel Hernández-Lobato, a university lecturer in machine learning at the University of Cambridge. In our conversation with Miguel, we explore his work at the intersection of Bayesian learning and deep learning. We discuss how he’s been applying this to the field of molecular design and discovery via two different methods, with one paper searching for possible chemical reactions, and the other doing the same, but in 3D and in 3D space. We also discuss the challenges of sample efficiency, creating objective functions, and how those manifest themselves in these experiments, and how he integrated the Bayesian approach to RL problems. We also talk through a handful of other papers that Miguel has presented at recent conferences, which are all linked at twimlai.com/go/510.

16 Aug 202142min

Codex, OpenAI’s Automated Code Generation API with Greg Brockman - #509

Codex, OpenAI’s Automated Code Generation API with Greg Brockman - #509

Today we’re joined by return guest Greg Brockman, co-founder and CTO of OpenAI. We had the pleasure of reconnecting with Greg on the heels of the announcement of Codex, OpenAI’s most recent release. Codex is a direct descendant of GPT-3 that allows users to do autocomplete tasks based on all of the publicly available text and code on the internet. In our conversation with Greg, we explore the distinct results Codex sees in comparison to GPT-3, relative to the prompts it's being given, how it could evolve given different types of training data, and how users and practitioners should think about interacting with the API to get the most out of it. We also discuss Copilot, their recent collaboration with Github that is built on Codex, as well as the implications of Codex on coding education, explainability, and broader societal issues like fairness and bias, copyrighting, and jobs.  The complete show notes for this episode can be found at twimlai.com/go/509.

12 Aug 202147min

Spatiotemporal Data Analysis with Rose Yu - #508

Spatiotemporal Data Analysis with Rose Yu - #508

Today we’re joined by Rose Yu, an assistant professor at the Jacobs School of Engineering at UC San Diego.  Rose’s research focuses on advancing machine learning algorithms and methods for analyzing large-scale time-series and spatial-temporal data, then applying those developments to climate, transportation, and other physical sciences. We discuss how Rose incorporates physical knowledge and partial differential equations in these use cases and how symmetries are being exploited. We also explore their novel neural network design that is focused on non-traditional convolution operators and allows for general symmetry, how we get from these representations to the network architectures that she has developed and another recent paper on deep spatio-temporal models.  The complete show note for this episode can be found at twimlai.com/go/508.

9 Aug 202132min

Populärt inom Politik & nyheter

svenska-fall
p3-krim
rss-krimstad
fordomspodden
rss-viva-fotboll
flashback-forever
aftonbladet-daily
rss-sanning-konsekvens
rss-vad-fan-hande
olyckan-inifran
dagens-eko
krimmagasinet
rss-frandfors-horna
rss-krimreportrarna
motiv
rss-expressen-dok
svd-dokumentara-berattelser-2
svd-nyhetsartiklar
blenda-2
spotlight