The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.

Avsnitt(762)

AI Agents: Substance or Snake Oil with Arvind Narayanan - #704

AI Agents: Substance or Snake Oil with Arvind Narayanan - #704

Today, we're joined by Arvind Narayanan, professor of Computer Science at Princeton University to discuss his recent works, AI Agents That Matter and AI Snake Oil. In “AI Agents That Matter”, we explore the range of agentic behaviors, the challenges in benchmarking agents, and the ‘capability and reliability gap’, which creates risks when deploying AI agents in real-world applications. We also discuss the importance of verifiers as a technique for safeguarding agent behavior. We then dig into the AI Snake Oil book, which uncovers examples of problematic and overhyped claims in AI. Arvind shares various use cases of failed applications of AI, outlines a taxonomy of AI risks, and shares his insights on AI’s catastrophic risks. Additionally, we also touched on different approaches to LLM-based reasoning, his views on tech policy and regulation, and his work on CORE-Bench, a benchmark designed to measure AI agents' accuracy in computational reproducibility tasks. The complete show notes for this episode can be found at https://twimlai.com/go/704.

7 Okt 202454min

AI Agents for Data Analysis with Shreya Shankar - #703

AI Agents for Data Analysis with Shreya Shankar - #703

Today, we're joined by Shreya Shankar, a PhD student at UC Berkeley to discuss DocETL, a declarative system for building and optimizing LLM-powered data processing pipelines for large-scale and complex document analysis tasks. We explore how DocETL's optimizer architecture works, the intricacies of building agentic systems for data processing, the current landscape of benchmarks for data processing tasks, how these differ from reasoning-based benchmarks, and the need for robust evaluation methods for human-in-the-loop LLM workflows. Additionally, Shreya shares real-world applications of DocETL, the importance of effective validation prompts, and building robust and fault-tolerant agentic systems. Lastly, we cover the need for benchmarks tailored to LLM-powered data processing tasks and the future directions for DocETL. The complete show notes for this episode can be found at https://twimlai.com/go/703.

30 Sep 202448min

Stealing Part of a Production Language Model with Nicholas Carlini - #702

Stealing Part of a Production Language Model with Nicholas Carlini - #702

Today, we're joined by Nicholas Carlini, research scientist at Google DeepMind to discuss adversarial machine learning and model security, focusing on his 2024 ICML best paper winner, “Stealing part of a production language model.” We dig into this work, which demonstrated the ability to successfully steal the last layer of production language models including ChatGPT and PaLM-2. Nicholas shares the current landscape of AI security research in the age of LLMs, the implications of model stealing, ethical concerns surrounding model privacy, how the attack works, and the significance of the embedding layer in language models. We also discuss the remediation strategies implemented by OpenAI and Google, and the future directions in the field of AI security. Plus, we also cover his other ICML 2024 best paper, “Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining,” which questions the use and promotion of differential privacy in conjunction with pre-trained models. The complete show notes for this episode can be found at https://twimlai.com/go/702.

23 Sep 20241h 3min

Supercharging Developer Productivity with ChatGPT and Claude with Simon Willison - #701

Supercharging Developer Productivity with ChatGPT and Claude with Simon Willison - #701

Today, we're joined by Simon Willison, independent researcher and creator of Datasette to discuss the many ways software developers and engineers can take advantage of large language models (LLMs) to boost their productivity. We dig into Simon’s own workflows and how he uses popular models like ChatGPT and Anthropic’s Claude to write and test hundreds of lines of code while out walking his dog. We review Simon’s favorite prompting and debugging techniques, his strategies for sidestepping the limitations of contemporary models, how he uses Claude’s Artifacts feature for rapid prototyping, his thoughts on the use and impact of vision models, the role he sees for open source models and local LLMs, and much more. The complete show notes for this episode can be found at https://twimlai.com/go/701.

16 Sep 20241h 14min

Automated Design of Agentic Systems with Shengran Hu - #700

Automated Design of Agentic Systems with Shengran Hu - #700

Today, we're joined by Shengran Hu, a PhD student at the University of British Columbia, to discuss Automated Design of Agentic Systems (ADAS), an approach focused on automatically creating agentic system designs. We explore the spectrum of agentic behaviors, the motivation for learning all aspects of agentic system design, the key components of the ADAS approach, and how it uses LLMs to design novel agent architectures in code. We also cover the iterative process of ADAS, its potential to shed light on the behavior of foundation models, the higher-level meta-behaviors that emerge in agentic systems, and how ADAS uncovers novel design patterns through emergent behaviors, particularly in complex tasks like the ARC challenge. Finally, we touch on the practical applications of ADAS and its potential use in system optimization for real-world tasks. The complete show notes for this episode can be found at https://twimlai.com/go/700.

2 Sep 202459min

The EU AI Act and Mitigating Bias in Automated Decisioning with Peter van der Putten - #699

The EU AI Act and Mitigating Bias in Automated Decisioning with Peter van der Putten - #699

Today, we're joined by Peter van der Putten, director of the AI Lab at Pega and assistant professor of AI at Leiden University. We discuss the newly adopted European AI Act and the challenges of applying academic fairness metrics in real-world AI applications. We dig into the key ethical principles behind the Act, its broad definition of AI, and how it categorizes various AI risks. We also discuss the practical challenges of implementing fairness and bias metrics in real-world scenarios, and the importance of a risk-based approach in regulating AI systems. Finally, we cover how the EU AI Act might influence global practices, similar to the GDPR's effect on data privacy, and explore strategies for closing bias gaps in real-world automated decision-making. The complete show notes for this episode can be found at https://twimlai.com/go/699.

27 Aug 202445min

The Building Blocks of Agentic Systems with Harrison Chase - #698

The Building Blocks of Agentic Systems with Harrison Chase - #698

Today, we're joined by Harrison Chase, co-founder and CEO of LangChain to discuss LLM frameworks, agentic systems, RAG, evaluation, and more. We dig into the elements of a modern LLM framework, including the most productive developer experiences and appropriate levels of abstraction. We dive into agents and agentic systems as well, covering the “spectrum of agenticness,” cognitive architectures, and real-world applications. We explore key challenges in deploying agentic systems, and the importance of agentic architectures as a means of communication in system design and operation. Additionally, we review evolving use cases for RAG, and the role of observability, testing, and evaluation tools in moving LLM applications from prototype to production. Lastly, Harrison shares his hot takes on prompting, multi-modal models, and more! The complete show notes for this episode can be found at https://twimlai.com/go/698.

19 Aug 202459min

Simplifying On-Device AI for Developers with Siddhika Nevrekar - #697

Simplifying On-Device AI for Developers with Siddhika Nevrekar - #697

Today, we're joined by Siddhika Nevrekar, AI Hub head at Qualcomm Technologies, to discuss on-device AI and how to make it easier for developers to take advantage of device capabilities. We unpack the motivations for AI engineers to move model inference from the cloud to local devices, and explore the challenges associated with on-device AI. We dig into the role of hardware solutions, from powerful system-on-chips (SoC) to neural processors, the importance of collaboration between community runtimes like ONNX and TFLite and chip manufacturers, the unique challenges of IoT and autonomous vehicles, and the key metrics developers should focus on to ensure optimal on-device performance. Finally, Siddhika introduces Qualcomm's AI Hub, a platform developed to simplify the process of testing and optimizing AI models across different devices. The complete show notes for this episode can be found at https://twimlai.com/go/697.

12 Aug 202446min

Populärt inom Politik & nyheter

svenska-fall
p3-krim
rss-viva-fotboll
flashback-forever
svd-dokumentara-berattelser-2
rss-sanning-konsekvens
aftonbladet-daily
rss-vad-fan-hande
olyckan-inifran
dagens-eko
rss-krimstad
fordomspodden
motiv
rss-frandfors-horna
krimmagasinet
rss-krimreportrarna
blenda-2
svd-nyhetsartiklar
kungligt
svd-ledarredaktionen