#47 - Catherine Olsson & Daniel Ziegler on the fast path into high-impact ML engineering roles

#47 - Catherine Olsson & Daniel Ziegler on the fast path into high-impact ML engineering roles

After dropping out of a machine learning PhD at Stanford, Daniel Ziegler needed to decide what to do next. He’d always enjoyed building stuff and wanted to shape the development of AI, so he thought a research engineering position at an org dedicated to aligning AI with human interests could be his best option.

He decided to apply to OpenAI, and spent about 6 weeks preparing for the interview before landing the job. His PhD, by contrast, might have taken 6 years. Daniel thinks this highly accelerated career path may be possible for many others.

On today’s episode Daniel is joined by Catherine Olsson, who has also worked at OpenAI, and left her computational neuroscience PhD to become a research engineer at Google Brain. She and Daniel share this piece of advice for those curious about this career path: just dive in. If you're trying to get good at something, just start doing that thing, and figure out that way what's necessary to be able to do it well.

Catherine has even created a simple step-by-step guide for 80,000 Hours, to make it as easy as possible for others to copy her and Daniel's success.

Please let us know how we've helped you: fill out our 2018 annual impact survey so that 80,000 Hours can continue to operate and grow.

Blog post with links to learn more, a summary & full transcript.

Daniel thinks the key for him was nailing the job interview.

OpenAI needed him to be able to demonstrate the ability to do the kind of stuff he'd be working on day-to-day. So his approach was to take a list of 50 key deep reinforcement learning papers, read one or two a day, and pick a handful to actually reproduce. He spent a bunch of time coding in Python and TensorFlow, sometimes 12 hours a day, trying to debug and tune things until they were actually working.

Daniel emphasizes that the most important thing was to practice *exactly* those things that he knew he needed to be able to do. His dedicated preparation also led to an offer from the Machine Intelligence Research Institute, and so he had the opportunity to decide between two organisations focused on the global problem that most concerns him.

Daniel’s path might seem unusual, but both he and Catherine expect it can be replicated by others. If they're right, it could greatly increase our ability to get new people into important ML roles in which they can make a difference, as quickly as possible.

Catherine says that her move from OpenAI to an ML research team at Google now allows her to bring a different set of skills to the table. Technical AI safety is a multifaceted area of research, and the many sub-questions in areas such as reward learning, robustness, and interpretability all need to be answered to maximize the probability that AI development goes well for humanity.

Today’s episode combines the expertise of two pioneers and is a key resource for anyone wanting to follow in their footsteps. We cover:

* What are OpenAI and Google Brain doing?
* Why work on AI?
* Do you learn more on the job, or while doing a PhD?
* Controversial issues within ML
* Is replicating papers a good way of determining suitability?
* What % of software developers could make similar transitions?
* How in-demand are research engineers?
* The development of Dota 2 bots
* Do research scientists have more influence on the vision of an org?
* Has learning more made you more or less worried about the future?

Get this episode by subscribing: type '80,000 Hours' into your podcasting app.

The 80,000 Hours Podcast is produced by Keiran Harris.

Jaksot(317)

#225 – Daniel Kokotajlo on what a hyperspeed robot economy might look like

#225 – Daniel Kokotajlo on what a hyperspeed robot economy might look like

When Daniel Kokotajlo talks to security experts at major AI labs, they tell him something chilling: “Of course we’re probably penetrated by the CCP already, and if they really wanted something, they c...

27 Loka 20252h 12min

#224 – There's a cheap and low-tech way to save humanity from any engineered disease | Andrew Snyder-Beattie

#224 – There's a cheap and low-tech way to save humanity from any engineered disease | Andrew Snyder-Beattie

Conventional wisdom is that safeguarding humanity from the worst biological risks — microbes optimised to kill as many as possible — is difficult bordering on impossible, making bioweapons humanity’s ...

2 Loka 20252h 31min

Inside the Biden admin’s AI policy approach | Jake Sullivan, Biden’s NSA | via The Cognitive Revolution

Inside the Biden admin’s AI policy approach | Jake Sullivan, Biden’s NSA | via The Cognitive Revolution

Jake Sullivan was the US National Security Advisor from 2021-2025. He joined our friends on The Cognitive Revolution podcast in August to discuss AI as a critical national security issue. We thought i...

26 Syys 20251h 5min

#223 – Neel Nanda on leading a Google DeepMind team at 26 – and advice if you want to work at an AI company (part 2)

#223 – Neel Nanda on leading a Google DeepMind team at 26 – and advice if you want to work at an AI company (part 2)

At 26, Neel Nanda leads an AI safety team at Google DeepMind, has published dozens of influential papers, and mentored 50 junior researchers — seven of whom now work at major AI companies. His secret?...

15 Syys 20251h 46min

#222 – Can we tell if an AI is loyal by reading its mind? DeepMind's Neel Nanda (part 1)

#222 – Can we tell if an AI is loyal by reading its mind? DeepMind's Neel Nanda (part 1)

We don’t know how AIs think or why they do what they do. Or at least, we don’t know much. That fact is only becoming more troubling as AIs grow more capable and appear on track to wield enormous cultu...

8 Syys 20253h 1min

#221 – Kyle Fish on the most bizarre findings from 5 AI welfare experiments

#221 – Kyle Fish on the most bizarre findings from 5 AI welfare experiments

What happens when you lock two AI systems in a room together and tell them they can discuss anything they want?According to experiments run by Kyle Fish — Anthropic’s first AI welfare researcher — som...

28 Elo 20252h 28min

How not to lose your job to AI (article by Benjamin Todd)

How not to lose your job to AI (article by Benjamin Todd)

About half of people are worried they’ll lose their job to AI. They’re right to be concerned: AI can now complete real-world coding tasks on GitHub, generate photorealistic video, drive a taxi more sa...

31 Heinä 202551min

Rebuilding after apocalypse: What 13 experts say about bouncing back

Rebuilding after apocalypse: What 13 experts say about bouncing back

What happens when civilisation faces its greatest tests?This compilation brings together insights from researchers, defence experts, philosophers, and policymakers on humanity’s ability to survive and...

15 Heinä 20254h 26min

Suosittua kategoriassa Koulutus

rss-murhan-anatomia
psykopodiaa-podcast
voi-hyvin-meditaatiot-2
rss-valo-minussa-2
adhd-podi
psykologia
rss-narsisti
salainen-paivakirja
rss-liian-kuuma-peruna
rss-duodecim-lehti
rahapuhetta
aloita-meditaatio
rss-vapaudu-voimaasi
rss-niinku-asia-on
kesken
rss-luonnollinen-synnytys-podcast
aamukahvilla
rss-uskonto-on-tylsaa
rss-selvat-savelet
rss-koira-haudattuna